+ 返回首页   + 加入收藏   + 联系我们
产品搜索

产品目录
行业标准
联系我们

超声检测技术中的缺陷定性方法

超声检测技术中的缺陷定性方法
作者:4H  来源:转载  发布时间: 2008-12-23

  超声无损检测 技术中的三大关键问题是缺陷的定位、定量和定性评定。迄今為(wèi)止,广大的超声检测技术人员已作了大量实验研究工作,在对缺陷的定位和定量评定方面取得了很(hěn)大进展,并逐步趋于成熟与完善。如在众多(duō)有(yǒu)关超声检验的技术规范中,对诸如确定缺陷埋藏深度及在探测面上的投影位置,评定缺陷的当量大小(xiǎo),延伸長(cháng)度以及缺陷投影面积等都有(yǒu)明确的方法规定,对保证产品构件的质量和**使用(yòng)具有(yǒu)重大作用(yòng)。然而,在对缺陷定性评定方面却存在相当大的困难,这主要是由于缺陷对超声波的反射特性取决于缺陷的取向、几何形状、相对超声波传播方向的長(cháng)度和厚度、缺陷的表面粗糙度、缺陷内含物(wù)以及缺陷的种类和性质等等,并且还与所使用(yòng)的超声检测系统特性及显示方式有(yǒu)关,因此,在超声检测时所获得的缺陷超声响应是一个综合响应。在目前常用(yòng)的超声检测技术上还难以将上述各因素从综合响应中分(fēn)离识别出来,给定性评定带来了困难。
 
在实际检测过程中,由于难以判明缺陷性质,往往会使一些含有(yǒu)对使用(yòng)条件是非危险性的、或者在后续加工过程中可(kě)以被改善甚至消除的缺陷的产品被拒收,造成不必要的浪费,同时也可(kě)能(néng)忽视了一些含有(yǒu)危险性缺陷(如裂纹类缺陷)的产品,对产品的**使用(yòng)造成潜在威胁。
 
本文(wén)的目的是试图把迄今為(wèi)止广大超声检测人员在缺陷定性评定方面进行的主要研究工作做一综合介绍,以期促进对缺陷定性评定方法研究的发展。
 
超声检测技术对缺陷定性评定的主要方法
 
一.波形判断法(经验法)
 
目前应用(yòng)*广泛的是A扫描显示型超声脉冲反射式检测仪。经过長(cháng)期的超声检测实践,许多(duō)超声检测人员对其大量接触的材料、产品及制造工艺有(yǒu)充分(fēn)的了解,并通过大量的解剖分(fēn)析验证,积累了丰富的经验,在检测时能(néng)通过A扫描显示型超声脉冲反射式探伤仪,根据示波屏上出现缺陷回波时的波形形状,例如视频显示或射频显示,起波速度,回波前沿的陡峭程度及回波后沿下降的速度(下降斜率),波尖形状,回波占宽以及移动探头时缺陷回波的变化情况(波幅、位置、数量、形状、动态包络等),还可(kě)以根据观察多(duō)次底波的次数,底波高度损失情况,再根据缺陷在被检件中的位置,分(fēn)布情况,缺陷的当量大小(xiǎo)(与反射率有(yǒu)关),延伸情况,结合具體(tǐ)产品、材料的特点和制造工艺作出综合判断,评估出缺陷的种类和性质。有(yǒu)时还可(kě)以通过改变发射超声波脉冲的频率、改变声束直径大小(xiǎo)(采取聚焦或采用(yòng)不同直径的探头等)来观察缺陷的回波变化特征,从而识别是材料中的冶金缺陷还是组织反射。
 
在这方面已经有(yǒu)不少经验总结和资料报道,例如判断钢锻件中的白点、夹杂物(wù)、残余缩孔、粗晶、中心疏松、方框形偏析,以及焊缝中的气孔、夹渣、未焊透、未熔合、裂纹等等。
 
必须指出,这种判断方法在很(hěn)大程度上依赖超声检测人员的经验、技术水平和对特定产品、材料及制造工艺的充分(fēn)了解,其局限性是很(hěn)大的,难以推广成為(wèi)通用(yòng)的评定方法。此外,作為(wèi)A扫描显示的缺陷回波所显示的缺陷信息也极其有(yǒu)限,主要显示的是波幅大小(xiǎo)、位置和回波包络形状,而缺陷对超声响应的相位、频谱等重要信息则无法显示出来,但是后两者与缺陷性质和种类有(yǒu)着密切关系,这也正是目前广大超声检测人员致力研究探索的问题。
 
下面举出一部分(fēn)常见缺陷的回波特征:
 
(1)钢锻件中的粗晶与疏松--多(duō)以杂波、丛状波形式或底波高度损失增大、底波反射次数减少等形式出现。
 
(2)棒材的中心裂纹--在沿圆周面作360°径向纵波扫查时,由于裂纹的辐射方向性,其反射波幅有(yǒu)高低变化并有(yǒu)不同程度的游动,在沿轴向扫查时,反射波幅度和位置变化不大并显示有(yǒu)一定的延伸長(cháng)度。
 
(3)锻件中的裂纹--由于裂纹型缺陷内含物(wù)多(duō)有(yǒu)气體(tǐ)存在,与基體(tǐ)材料声阻抗差异较大,超声反射率高,缺陷有(yǒu)一定延伸長(cháng)度,起波速度快,回波前沿陡峭,波峰尖锐,回波后沿斜率很(hěn)大,当探头越过裂纹延伸方向移动时,起波迅速,消失也迅速。
 
(4)钢锻件中的白点--波峰尖锐清晰,常為(wèi)多(duō)头状,反射强烈,起波速度快,回波前沿陡峭,回波后沿斜率很(hěn)大,在移动探头时回波位置变化迅速,此起彼伏,多(duō)处于被检件例如钢棒材的中心到1/2半径范围内,或者钢锻件厚度*大的截面的1/4~3/4中层位置,有(yǒu)成批出现的特点(与炉批号和热加工批有(yǒu)关)。当白点数量多(duō)、面积大或密集分(fēn)布时,还会导致底波高度显著降低甚至消失。
 
(5)锻件中的非金属夹杂物(wù)--多(duō)為(wèi)单个反射信号,起波较慢,回波前沿不太陡峭,波峰较圆钝,回波后沿斜率不太大并且回波占宽较大。
 
(6)钛合金锻件中的高密度夹杂物(wù)(例如钨、钼)--多(duō)為(wèi)单个反射信号,回波占宽不太大,但较裂纹类要大些,回波前沿较陡峭,后沿斜率较大,当改变探测频率和声束直径时,其反射当量大小(xiǎo)变化不大(如為(wèi)大晶粒或其他(tā)组织反射在这种情况下回波高度将有(yǒu)显著变化)。
 
(7)铸件或焊缝中的气孔--起波快但波幅较低,有(yǒu)点状缺陷的特征。
 
(8)焊缝中的未焊透--多(duō)為(wèi)根部未焊透(如V型坡口单面焊时钝边未熔合)或中间未焊透(如X型坡口双面焊时钝边未熔合),一般延伸状况较直,回波规则单一,反射强,从焊缝两侧探伤都容易发现。
 
(9)铸件或焊缝中的夹渣--反射波较紊乱,位置无规律,移动探头时回波有(yǒu)变化,但波形变化相对较迟缓,反射率较低,起波速度较慢且后沿斜率不太大,回波占宽较大。
 
一般在可(kě)能(néng)的情况下,為(wèi)了进一步确认缺陷性质,还应采用(yòng)其他(tā)无损检测手段,例如X射線(xiàn)照相(检查内部缺陷)、磁粉和渗透检验(检查表面缺陷)来辅助判断。
 
二.根据回波相位识别反射體(tǐ)
 
根据声压反射率公式:rp=(Z2cosα-Z1cosβ)/(Z2cosα+Z1cosβ)
式中:Z1-**介质(被检材料)的声阻抗;Z2-**介质(缺陷)的声阻抗;α-入射角;β-反射角
当超声波垂直入射时,cosα=cosβ=1,当入射波与反射波同為(wèi)一种波型时,α=β,上述公式简化為(wèi):rp=(Z2-Z1)/(Z2+Z1)
即超声波在被检材料中投射到缺陷上时,在界面的声反射大小(xiǎo)取决于两者声阻抗差值,并在Z2<Z1的情况下,回波相位与入射波反相,从而可(kě)以利用(yòng)回波与入射波的相位关系识别例如裂纹或其他(tā)反射體(tǐ)。
如图1(上)所示,使用(yòng)平底孔(含空气)调整起始灵敏度时,显示的射频回波相位与金属材料中的入射波相位相反,而对于裂纹、非金属夹杂物(wù)等缺陷,情况相似,即缺陷回波与平底孔回波相位相同(图1中)。如果是高密度夹杂物(wù)(例如钨、钼等)缺陷时,则缺陷回波与平底孔回波相位相反,即Z缺>Z基时,回波与入射波同相,与平底孔回波反相;Z缺<Z基时,回波与入射波反相,与平底孔回波同相。(Z缺為(wèi)缺陷声阻抗,Z基為(wèi)基體(tǐ)材料声阻抗)。
另一种利用(yòng)回波射频显示正向与负向*大振幅关系识别焊缝中裂纹类危险缺陷的方法如图2所示。
应当说明的是,上述两种方法都需要能(néng)在示波屏上以较大程度(比例)展宽脉冲信号的超声探伤仪,并应能(néng)作射频显示,但目前常用(yòng)的一般便携式超声探伤仪在这方面的应用(yòng)还受到一定限制。
 
图1 根据回波相位识别反射體(tǐ)
 
图2 射频显示波形正负振幅关系法
A-缺陷回波负向*大振幅;B-缺陷回波正向*大振幅
A/B>1--裂纹类缺陷;A/B<1--其他(tā)反射體(tǐ)
 

三.根据视频显示波形的形状判别缺陷性质
 
这是在经验法的基础上,通过定量测定缺陷回波的前沿上升时间(t1),脉冲持续时间(t2)和脉冲下降时间(t3),从而对缺陷性质进行判别的方法,见图3所示。
首先应对示波屏水平基線(xiàn)刻度以0.1μs或1μs分(fēn)划,可(kě)以使用(yòng)厚度2.5英寸(63.6mm)的纯铝平面试块(CL=6.35mm/μs),使**、二次底波前沿分(fēn)别对准总長(cháng)100mm的水平線(xiàn)刻度上的50和100mm,此时水平基線(xiàn)刻度每1mm代表声波传播时间為(wèi)0.4μs(往返时间),使缺陷回波高度為(wèi)100%满刻度,读取90%满刻度線(xiàn)和20%满刻度線(xiàn)与回波包络線(xiàn)交点所对应的t1、t2和t3三个时间(见图3)。
对于裂纹类缺陷(类似镜面反射),其t1小(xiǎo),t2较非平面缺陷的t2要小(xiǎo);
对于疏松、夹杂类缺陷,由于缺陷周围不规则界面的弥散特征,使t3较長(cháng),并且t1、t2也较裂纹类缺陷的大。
 
图3 脉冲波形形状测定法
 

这种方法与经验法判断含气體(tǐ)的裂纹类缺陷回波的前沿陡峭、回波占宽较小(xiǎo)、回波后沿斜率较大的特点是相应的,但是用(yòng)这种方法可(kě)以更定量地判断,不过其具體(tǐ)定量值尚需做大量的实验验证工作后确定。
 
四.缺陷回波的频谱分(fēn)析
 
缺陷回波的频谱包络形状与缺陷几何形状及取向,以及缺陷尺寸与超声波長(cháng)的比值密切相关,因此可(kě)以通过向缺陷发射宽频带(窄脉冲)超声波并对接收到的回波信号频谱进行分(fēn)析从而判断缺陷种类和性质。在这方面已有(yǒu)不少资料报道,但主要还是以识别反射體(tǐ)的几何形状為(wèi)基础,例如识别是平面缺陷还是體(tǐ)积缺陷,是倾斜取向还是垂直取向的缺陷,利用(yòng)不同形状与取向缺陷的反射与频率的依从关系,能(néng)较好地确定缺陷的种类和性质。
 
我们知道,在探伤仪上显示的是缺陷的合成传输函数:F合=F1·F2·F32·F42·F5·F62
 
式中:F1-发生器传输函数;F2-放大器传输函数;F3-探头传输函数;F4-被检件传输函数;F5-缺陷传输函数;F6-耦合传输函数。其中F3、F4和F6对超声信号有(yǒu)两次(往返)影响,故取其平方值。
 
在一般情况下,缺陷传输函数F5又(yòu)是下述缺陷各参数的函数ψ:F5=ψ{K·Nb·Sb·Qb·Rb}
 
式中:K-缺陷坐(zuò)标(位置);Nb-缺陷性质;Sb-缺陷面积;Qb-缺陷取向;Rb-缺陷内含物(wù)(填充物(wù))
 
在用(yòng)普通单频超声法向工件发射超声脉冲和接收反射超声脉冲时,缺陷内含物(wù)的脉冲频率保持不变,因此電(diàn)路和声路部分(fēn)所有(yǒu)传输函数都不带有(yǒu)缺陷信息,成了窄频滤波器,并由于它们彼此的振幅频率特性有(yǒu)显著不同,而使包含在F5中的大部分(fēn)缺陷信息消失在其他(tā)传输函数中。
 
利用(yòng)频谱法可(kě)以比普通单频法大大增加有(yǒu)关缺陷性质和大小(xiǎo)的信息量。对于K、Qb和Sb,容易用(yòng)普通方法确定,困难的是确定Nb和Rb。可(kě)以把缺陷反射脉冲的频谱设為(wèi)R(x),发射脉冲频谱為(wèi)E(t),而缺陷传输函数设為(wèi)h(t),则:
 
R(x)=E(t)·h(t)
 
当已知与给定方向有(yǒu)关的函数R(x)后,虽然还不能(néng)确定缺陷的全部特征,但已能(néng)对缺陷的一般形状,特别是对缺陷的取向提供有(yǒu)用(yòng)的资料。因此,可(kě)以利用(yòng)宽频带(窄脉冲)探头,并使发射频谱尽可(kě)能(néng)规则,则缺陷回波频谱将随缺陷的形状和取向而变化,从而有(yǒu)助于判断出缺陷的种类和性质。
 
超声检测技术对缺陷定性评定的其他(tā)方法
 
1.超声C扫描和B扫描
 
这是将直通回波以線(xiàn)型方式显示缺陷的平面投影形状(C扫描)或缺陷在深度截面上反射面的平直、弯曲,即反射界面的形状(B扫描),从而帮助判断缺陷的种类和性质。
 
2.超声全息
 
借助全息原理(lǐ),将缺陷反射的大量信息数据处理(lǐ)成三维空间立體(tǐ)图像显示以辅助判断。
 
3.利用(yòng)電(diàn)子计算机处理(lǐ)缺陷回波信号
 
目前國(guó)内外均在研究并试制出電(diàn)脑化超声波探伤仪。但是常用(yòng)的是与频谱分(fēn)析结合使用(yòng)或作為(wèi)超声探测程序控制来使用(yòng),不过相信很(hěn)快将有(yǒu)突破性发展。
 
结束语
 
超声检测技术对缺陷定性方法的研究由于生产发展的急迫需要,特别是当前技术的发展已越来越强调断裂力學(xué)的重要性并提出了损伤容限设计概念,从而越来越引起人们的注意和重视,相信在广大超声检测技术人员的努力下将很(hěn)快取得较大的进展。

北京总部地址:北京朝阳區(qū)朝阳路71号 電(diàn)话:010-51650108、82376306  售后服務(wù)電(diàn)话:18698910848
公司法律顾问: 叶春律师